Cell Fate in Cancer
The cell is the basic unit of life. The attainment of a nucleus to house the genetic material is thought to have provided a distinct advantage to the evolving cell, ultimately allowing the emergence of differentiated, specialized cells. Hoarding evidence suggests that genomes are organized non-randomly into complex 3D configurations that vary according to cell type, stage of development, differentiation and disease status. The principles, which guide higher order organization, the mechanisms responsible for establishment, maintenance and alterations of higher order genome, and the functional consequences of aberrant genome and nuclear organization, have become zones of intense interest. The higher-order spatial and temporal organization of genomes in the cell nucleus is rapidly evolving as a driver of biological function in differentiation, development and disease and the incorporation of information on higher order genome organization add an additional level of complexity in our understanding of genome regulation. DNA sequence variations and biochemical sequence modifications co-define cell fate. Through exploration of cancer genomes, new gene categories have been identified that imply novel underlying mechanisms related to epigenetics, transcriptional processes and cell differentiation. These contrivances are of major prominence in tumorigenesis and cancer therapy failure.
Differentiated tumor cells may present different elevated cell potencies. Thus, tumor heterogeneity may be presented as a certain three-dimensional space that is defined by the range of three key features – cell potency, cell lineage specificity and variance. Cell fate dynamics and the resulting cell population diversity and evolution during tumorigenesis and cancer drug treatment have been correlated with cellular responses to environmental stress. This might provide new insights for understanding tumorigenesis and new strategies that target whole cell system dynamics for cancer therapy.
- Oncoproteins and Cellular Targets
- Emerging Concepts and Technologies
- Genomics, Biomarkers and clinical trials
- Integrative Science and Translation
Related Conference of Cell Fate in Cancer
18th World Congress on Advances in Stem Cell Research and Regenerative Medicine
20th World Congress on Tissue Engineering Regenerative Medicine and Stem Cell Research
18th International Conference on Human Genomics and Genomic Medicine
16th International Conference on Human Genetics and Genetic Diseases
19th International Conference on Genomics & Pharmacogenomics
ESSO-EYSAC Course on Colorectal Cancer Surgery Ljubljana Slovenia
Miami 2016 Winter Symposium Miami United States of America
2nd AMDI International Biohealth Sciences Conference 2016 Penang Malaysia
ESSO Course on the Management of High Risk Patients for Breast Cancer A Multidisciplinary Approach Berlin Germany
3rd International Conference on Biotechnology and Bioinformatics ICBB-2016 Pune India
New and Emerging Trends In Oncology 2016 Hyderabad India
International Conference on Radiation Research Impact on Human Health and Environment Mumbai India
3rd Annual International Conference on Advances in Cancer Medical Research ACMR 2016 Singapore Singapore
The Probiotics Congress Asia Kuala Lumpur Malaysia
Molecular Medicine Tri-Con 2016 San Francisco United States of America
Cell Fate in Cancer Conference Speakers
Recommended Sessions
Related Journals
Are you interested in
- Achieving efficient delivery and editing - CRISPR 2025 (Italy)
- Bioinformatics in Plant Sciences - Cellular Biology-2025 (Spain)
- Cancer and stem cells - CRISPR 2025 (Italy)
- Climate Change and Plant Adaptation - Cellular Biology-2025 (Spain)
- CRISPR technologies and society - CRISPR 2025 (Italy)
- CRISPR technologies beyond genome editing and gene regulation - CRISPR 2025 (Italy)
- Genome editing and gene regulation in human health - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial bacterial biotechnology - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial eukaryotic biotechnology - CRISPR 2025 (Italy)
- Genome Editing Methods and Novel Tools - CRISPR 2025 (Italy)
- Horizons of CRISPR biology - CRISPR 2025 (Italy)
- Phytochemical Analysis - Cellular Biology-2025 (Spain)
- Plant and Animal Biotechnology - CRISPR 2025 (Italy)
- Plant Biotechnology - Cellular Biology-2025 (Spain)
- Plant Cryobiology and Conservation - Cellular Biology-2025 (Spain)
- Plant Disease and Bryology - Cellular Biology-2025 (Spain)
- Plant Evolution and Phylogenetics - Cellular Biology-2025 (Spain)
- Plant Genetics and Genomics - Cellular Biology-2025 (Spain)
- Plant Hormones - Cellular Biology-2025 (Spain)
- Plant Metabolic Engineering - Cellular Biology-2025 (Spain)
- Plant Molecular Biology and Biochemistry - Cellular Biology-2025 (Spain)
- Plant Nanotechnology - Cellular Biology-2025 (Spain)
- Plant Nutrition and Soil Science - Cellular Biology-2025 (Spain)
- Plant Pathology and Mycology - Cellular Biology-2025 (Spain)
- Plant Sciences and Research - Cellular Biology-2025 (Spain)
- Plant Tissue Culture - Cellular Biology-2025 (Spain)
- Plant-based Medicine and Therapeutics - Cellular Biology-2025 (Spain)
- Plant-Soil Interactions and Microbiomes - Cellular Biology-2025 (Spain)
- Structural Biology and Bioinformatics - CRISPR 2025 (Italy)
- Synthetic Biology in Plant Science - Cellular Biology-2025 (Spain)
- Therapeutic Genome Editing - CRISPR 2025 (Italy)
- Urban Agriculture and Vertical Farming - Cellular Biology-2025 (Spain)